SYNTHESIS OF 4,5-DIHYDRO-1,4-BENZOTHIAZEPINE DERIVATIVES VIA RING EXPANSION L. FODOR, J. SZABÓ* and G. BERNÁTH

Institute of Pharmaceutical Chemistry, University Medical School, H-6720 Szeged, P.O. Box 121, Hungary

L. PARKANYI

Central Research Institute of Chemistry of the Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17. Hungary

P. SOHAR*

Spectroscopic Department of EGYT Pharmacochemical Works, H-1475 Budapest, P.O.
Box 100, Hungary

<u>Summary</u>: Basic treatment in methanol of a chloro-β-lactam fused with dihydrobenzothiazine led to the corresponding 1,4-benzothiazepine derivative via a new ring expansion. The structure of the product, deduced from IR and ¹H NMR data, was confirmed by X-ray measurements.

In methanol in the presence of bases, 6α -phenyl- 7α -chloro-2,3(2',3'-dimethoxybenzo)-1-thiaoctem (1). prepared by us recently², yielded 2-carbomethoxy-3-phenyl-7,8-dimethoxy-4,5-dihydrobenzothiazepine (2, mp 170-2 $^{\circ}$ C) via ring expansion in a new type of reaction. The rate of the reaction depends on the base applied. 100% yield was achieved with 1 mole <u>t</u>-BuOK in 0,5 h or with 1 mole Et₃N in 24 h.

The IR 3 and $^1\text{H-NMR}$ spectral data 4 proved the presence of a/a CH $_2$ -NH group: vNH: 3320 (KBr) and 3420 cm $^{-1}$ (CHCl $_3$); δ CH $_2$ L 4.90 ppm, \underline{d} (6Hz); δ NH: 4.60 ppm, \underline{t} (6Hz); b/a tetrasubstituted benzene ring bearing two methoxy groups: δ OCH $_3$: 3.85 and 3.90 ppm, 2xs (2x3H); δ ArH 6.70 and 7.15 ppm, 2xs (2x1H); c/a carbonyl group in a conjugated ester of amide moiety, but not in a β -lactam ring: vC=0: 1640 cm $^{-1}$ (KBr) and 1675 cm $^{-1}$ (CHCl $_3$); d/a third methoxy substituent: 3.45 ppm, s (3H); and e/a phenyl ring: $C_{Ar}H$: 765 cm $^{-1}$; $\gamma C_{Ar}C_{Ar}$: 705 cm $^{-1}$; δ ArH: γ 7.3 ppm, γ 5 (5H).

Of the possible structure in accordance with all these spectral data, structure $\bf 2$ was proved by X-ray measurements. Crystal data: $C_{19}H_{19}O_4NS$, M: 357.4,

a = 18.190(2), b = 7.266(3), c = 13.194(3) Å, ß = 101.88(2) $^{\circ}$, V = 1706.5(1.4) Å, 5 μ (Mo-K $_{\alpha}$, λ = 0.71073 Å) = 2.15 cm $^{-1}$, D $_{X}$ = 1.391 gcm $^{-3}$, Z = 4, space group P2 $_{1}$ /c, 2372 non-zero intensities were collected on an Enraf-Nonius CAD4 computer-controlled, four-circle, single-crystal diffractometer, with monochromated Mo radia-

tion. The structure was solved by direct methods using the MULTAN program. 6 1369 reflexions [I $\geq \sigma$ (I)] were used in a full matrix anisotropic least-squares refinement Hydrogen atoms were located in difference maps and were refined in two isotropic least-squares cycles. The final R is 0.053 for observes and 0.119 for all reflexions. The structure is shown in Fig. 1 with the numbering used in the X-ray structure determination (bare numbers denote carbon atoms). 5

Hydrolysis of 2 with 10% HCl led to 2-benzoylmethylthio-4,5-dimethoxybenzylamine hydrochloride (3, mp 184-5 $^{\circ}$ C, 96%) 7 via splitting of the N-C(\underline{sp}^{2}) bond, followed by the decarboxylation of the ß-ketocarboxylic acid derivative formed by hydrolysis of the ester group. Compound 3 was also synthesized independently, from 2-mercapto-4,5-dimethoxybenzylamine hydrochloride with phenacyl bromide in methanol: dimethylformamide (3:1) solution (yield 76%).

References and Notes

- Saturated heterocycles, Part 26. Part 25: G. Bernáth, F. Fülöp, Gy. Argay, A. Kálmán, P. Sohár: Tetrahedron Letters, Accepted for publication.
- 2. L. Fodor, J. Szabó and P. Sohár: Tetrahedron, 37, 963 (1981).
- 3. Further IR data (Perkin Elmer 325 spectrometer, cm $^{-1}$) of **2:** ν C=C (conjugated with the phenyl ring): 1500 (KBr), ν C-O (conj. ester): 1290, 1055 (KBr) and 1290, 1055 (CHCl $_3$).
- 4. The ^1H NMR spectrum of **2** was recorded in DCDl $_3$ at room temperature with a Varian XL-100 FT spectrometer at 100 MHz, using TMS as internal standard.
- 5. Relevant data are deposited with the C. C. D. C /cf. Tetrahedron Lett. 22 No. 18 (1981).
- 6. G. Germain, P. Main, M. M. Woolfson, Acta Cryst., A27, 368 (1971).
- 7. IR (KBr, cm⁻¹) and ¹H NMR data (Varian EM-360 spectrometer, in DMSO-d₆, at 60 MHz, δppm) of **3**: NH₃⁺: 3500-2500, νC=O: 1665, νC-C (methoxy): 1275, 1260, 1040, γC_{Ar}H(phenyl): 730, 720, γC_{Ar}C_{Ar}(phenyl): 658, δNCH₂: 4.2 gy (2H) δSCH₂: 4.60 s, (2H), δOCH₃: 3.80 and 3.85 2xs (2x3H), δArH: 7.10 and 7.40 2xs (2x1H), δNH₃⁺: 8.65 t(3H), νArH (m- and p-phenyl): 440-465 Hz, m(3H) and νArH (o-phenyl): 470-490 Hz, m(2H)
- 8. J. Szabó, E. Vinkler, I. Varga: Acta Chim. Acad. Sci. Hung., 58, 179 (1968).